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The time-dependent Schro¨dinger equation of an open quantum-mechanical system is solved by using the
stationary biorthogonal eigenfunctions of the non-Hermitian time-independent Hamilton operator. We calcu-
late the decay rates at low and high level densities in two different formalism. The rates are generally time
dependent and oscillate around an average value due to the nonorthogonality of the wave functions. The decay
law is studied disregarding the oscillations. In the one-channel case, it is proportional tot2b with b'3/2 in all
cases considered, including the critical region of overlapping where the nonorthogonality of the wave functions
is large. Starting from the shell model, we getb'2 for two and four open decay channels and all coupling
strengths to the continuum. When the closed system is described by a random matrix,b'11K/2 for K5 2
and 4 channels. This law holds in a limited time interval. The distribution of the widths is different in the two
models when more than one channel is open. This leads to the different exponentsb in the power law. Our
calculations are performed with 190 and 130 states, respectively, most of them in the critical region. The
theoretical results should be proven experimentally by measuring the time behavior of deexcitation of a
realistic quantum system.@S1063-651X~96!07610-6#

PACS number~s!: 05.30.2d, 05.40.1j, 03.65.Nk, 24.60.2k

I. INTRODUCTION

The decay properties of quantum systems at high level
density are discussed in the literature with a renewed interest.
Such systems areopensystems. The environment is the en-
ergy continuum of decay channels into which the discrete
states of the closed system are embedded and gives them a
finite lifetime.

In @1–3# the decay law is studied analytically for an infi-
nite number of states. It is exponential in the many-channel
case, but proportional tot23/2 in the one-channel case. More
generally, it holdst212K/2 for a finite numberK of channels.
This law is confirmed by recent results of microwave experi-
ments@4#. Further theoretical investigations based on the de-
rivatives ofS-matrix eigenphases lead to similar results@5#.
The decay law of states at high level density in nuclei is
studied in@6#. In @7#, the fluctuations of delay times in few-
channel chaotic scattering are investigated. An expression for
the distribution of resonance widths is derived in@8# for the
case of a chaotic quantum system coupled to open decay
channels. This expression gives ax2 distribution for isolated
resonances, but a broad powerlike distribution for overlap-
ping resonances.

The decay rates of a quantum system at low and high
level density are studied in@9#. They are shown to saturate at
high level density. This result has been interpreted by the
authors as a breakdown of the optical model at high level
density. In@10# however, it is shown that the saturation cor-
responds to the trapping effect observed in many different
physical systems at high level density and that the optical
model does not break down. The trapping effect studied in

many papers~e.g., @11#! creates a separation of the time
scales at a critical value of the degree of resonance overlap-
ping. In another investigation@12#, the survival and decay
probabilities of high Rydberg states are studied. All these
investigations of the time behavior of a decaying system are
performed on the basis of the random-matrix theory. Thus
the question remains open whether similar results will be
obtained if the calculations are performed in the framework
of a more realistic formalism. Further, some of the results
mentioned above show a smooth time dependence of the
decay probability, while others have an oscillatory behavior.

In the following we investigate the decay properties of an
open quantum system in detail in order to see not only the
monotonic evolution but also the oscillations. We use the
continuum shell model~CSM! as well as the statistical model
~STM! and compare the results obtained. In Sec. II, the for-
malism for deriving the decay rates at high level density is
sketched. The properties of the non-Hermitian Hamilton op-
erator are described in detail. At high level density, the decay
rates are time-dependent functions. In Sec. III the quantum
coherence creating a redistribution in the system under criti-
cal conditions~trapping effect! is described. Here the wave
functions of the single resonances are no longer orthogonal
to each other due to the non-Hermiticity of the Hamilton
operator. Numerical results for the decay rates at low and
high level density are given in Sec. IV. By means of a simple
case~two resonances and one open decay channel!, the time
dependence of the decay rates, as well as the relation be-
tween the decay rates and the widths of the resonance states
at high level density, is illustrated. Further, calculations are
performed for many resonances and a few channels. The
decay rates oscillate around an average value due to the non-
orthogonality of the wave functions. In Sec. V, the decay law
is studied numerically. In the one-channel case we see a
power law in both the CSM and STM for all values of the
coupling strength including the critical region. In Sec. VI
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some general conclusions on the decay properties of open
quantum systems are drawn.

II. MODEL

A. Stationary solution of the Schrödinger equation

The Hamiltonian of an open quantum system is

H5HQQ1VQPGP
~1 !VPQ , ~1!

where

HQQ5HQQ
0 1VQQ ~2!

is the Hamiltonian of the closed system,

~HQQ2ER
SM!FR

SM50, ~3!

V is the residual interaction between two~bound or unbound!
particles of the system,GP

(1) is the Green’s function for the
motion of the particle in the energy continuum of decay
channels, andVQP5HQP andVPQ5HPQ due to the orthogo-
nality of the wave functions of the discrete and continuous
states. The operatorsQ andP project onto the subspaces of
the discrete and continuous states, respectively,

Q5 (
R51

N

uFR
SM&^FR

SMu ~4!

and

P5 (
c51

L E
ec

`

dEujE
c~1 !&^jE

c~1 !u. ~5!

Here thejE
c are coupled-channel wave functions in which the

channel-channel couplingVPP is involved

~HPP2E!jE
c50, ~6!

whereHPP5HPP
0 1VPP . Further,N is the number of dis-

crete states andL the number of open and closed decay
channels.

In our investigations,P1Q51. The division into the two
subspaces is made by including all resonance phenomena
into the Q subspace with the consequence that the wave
functions of theP subspace depend smoothly on energy in
the region considered. Therefore, spectroscopic investiga-
tions make sense, i.e., the eigenvalues ofH have a physical
meaning@13#. DiagonalizingH @Eq. ~1!#,

HF̃R5S ẼR2
i

2
G̃RD F̃R , ~7!

we get the energy-dependent eigenfunctionsF̃R and eigen-
valuesẼR2( i /2)G̃R from which the positionsER and widths
GR of the resonance statesR can be determined by solving
the fixed-point equations@13#. The energy dependence of the
ẼR and G̃R is smooth up to threshold effects in theG̃R

@15,16#. Therefore, far from thresholdsER'ẼR(E0) and
GR'G̃R(E0), whereE0 is a certain energy in the middle of
the region considered.

The right and left eigenfunctions of a non-Hermitian
Hamilton operator are different from each other. Suppose

HuF̃R
right&5 ẼRuF̃R

right&. ~8!

Then, by multiplying (8#) to the left with ^F̃R8
leftu we get

^F̃R8
leftuHuF̃R

right&5 ẼR^F̃R8
leftuF̃R

right&5 ẼRdRR8, ~9!

where the orthogonality of̂F̃R8
leftu and uF̃R

right& is assumed.
From ~9! it follows that

^F̃R
leftuH5 ẼR^F̃R

leftu, ~10!

which is the time-independent Schro¨dinger equation for the
left state. One gets, from Eq.~10!,

H†~^F̃R
leftu!†5 ẼR* ~^F̃R

leftu!†. ~11!

In the case of a Hermitian HamiltonianH†5H, it immedi-
ately follows from~11! by comparison with~8! that ẼR is real
andF̃R

left5F̃R
right. In our case Eq.~1!, the Hamiltonian is non-

Hermitian H†ÞH. The nondiagonal matrix elements
(c*dE ^FR

SMuVujE
c &GP

(1)^jE
c uVuFR8

SM& of H are, however,
symmetric in relation toR andR8 since theFR

SM are real.
Therefore,H†5H* . By taking the complex conjugate of
~11! and comparing with~8!, we getF̃R

left*5F̃R
right .

Therefore, the left eigenfunctions ofH are ^F̃R* u if the
right ones are denoted byuF̃R&. As a consequence, we have

^F̃R8
leftuF̃R

right&5^F̃R8
* uF̃R&5dRR8, ~12!

where bothF̃R8
* and F̃R are taken at the same energyE.

Further, it follows from~12! that

^F̃RuF̃R&>1 ~13!

and that^F̃R8uF̃R& is generally nonzero and complex forR
ÞR8.

For spectroscopic investigations to make sense, we re-
quire that^F̃R8

* (ER8)uF̃R(ER)&'dRR8. This condition is ful-

filled only if the F̃R are nearly energy independent. In such a
case, relation~12! holds to a good approximation also if
every F̃R is taken at the energyER of the resonance state
R @13#.

In the CSM, both the real and imaginary parts of
VQPGP

(1)VPQ in ~1! are taken into account,

H5HQQ1Re$VQPGP
~1 !VPQ%1 i Im$VQPGP

~1 !VPQ%,
~14!

whereHQQ , given by Eq.~2!, is a standard nuclear shell
model Hamiltonian with spin-orbit coupling and zero-range
forces @13,15#, GP

(1)5P„E2(HPP
0 1VPP)…

21P is the
Green’s function in theP subspace, and the energy-
dependent matrix elements^FR

SMuVujE
c & are calculated for all

resonance statesR and decay channelsc. They contain the
parametera, which is varied in order to investigate the be-
havior of the system as a function of the coupling strength
between the discrete states and the continuum@15#.
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It is VQP5aVQP
0 ,VPQ5aVPQ

0 , and VPP5aVPP
0 but

VQQ5VQQ
0 . A variation of the parametera leads also to

energy shifts that are large especially for the broad reso-
nances.

These energy shifts do not appear in the STM@17#. This
model is used generally for the description of a group of
states all lying in a relatively narrow energy region far from
thresholds. Thus it is justified to choose the coupling matrix
elementŝFR

SMuVujE
c & to be energy independent. Further, we

neglect the channel-channel coupling. It is also assumed that
Re$VQPGP

(1)VPQ% is energy independent and is effectively
taken into account together withVQQ in diagonalizing the
HamiltonianHQQ8 of the corresponding closed system, i.e.,

HQQ8 5HQQ
0 1VQQ1Re$VQPGP

~1 !VPQ%. ~15!

HQQ8 is drawn from the Gaussian orthogonal ensemble. Then
the relation between the Hamilton operatorH8 of the open
system andHQQ8 of the closed system reduces to

H85HQQ8 1 i Im$VQPGP
~1 !VPQ%5HQQ8 2 ipVV1. ~16!

The average coupling matrix elementvc
25(1/N)( i51

N uVi
cu2

contains the vectors Vc with components
Vi
c5^F i uAaV̂uxc& @18#. In our calculations, either the ele-

mentsVi
c are randomly chosen or the vectorsVc are con-

structed orthogonal with random length. In the first case, the
orthogonality is fulfilled with sufficient accuracy forN@K,
whereK is the number of open decay channels. The coupling
matrix elementvc

2 is a measure of the average coupling
strength of a discrete stateF i ~eigenfunction ofHQQ8 ) to the
channelxc . It can be varied by means of the coupling pa-
rametera.

B. Time-dependent equations

Considering the case of overlapping resonances, we rep-
resent the time-dependent wave function of an ensemble of
states by

uf~ t !&5(
R

aR~ t !uF̃R&, ~17!

where theF̃R are eigenfunctions ofH @Eq. ~1!#. Then the
time-dependent Schro¨dinger equation reads

i\
d

dt
uf~ t !&5Huf~ t !& ~18!

and

uf~ t !&5e2~ i /\!Htuf~0!&

5(
R

aR~0!e2~ i /\![ ẼR2~ i /2!G̃R] tuF̃R&. ~19!

The equation for̂f(t)u is

^f~ t !u5^f~0!ue~ i /\!H†t5(
R

aR~0!* e~ i /\![ ẼR1~ i /2!G̃R] t^F̃Ru.

~20!

The justification of (17#) and (18#) consists in the fol-
lowing. ~i! As discussed in Sec. II A, theẼR , G̃R , and F̃R
are almost independent of energy in the region considered.
~ii ! As shown in@13#, the wave function of a resonance state
is

ṼR5F̃R1(
c
E

ec

`

dE8jE8
c

~E~1 !2E8!21^jE8
c uVuF̃R&

5~11GP
~1 !V!F̃R , ~21!

but notF̃R . The wave functionsxE
c of the channelsc and the

coupled-channel wave functionsjE
c defined by Eq.~6!, are

related by

jE
c5~11GP

~1 !V!xE
c . ~22!

Therefore for the coupling matrix element of the resonance
stateR ~with the wave functionṼR) to the channelc ~with
the wave functionxE

c ) the relation@14#

^ṼRuVuxE
c &5^F̃RuVujE

c & ~23!

follows. In our formulation~with the HamiltonianH of the
CSM!, the channel coupling is contained in the basic wave
functionsjE

c of theP subspace@Eq. ~5!#, in the same manner
as configurational mixing is involved in the basic wave func-
tionsFR

SM of theQ subspace@Eq. ~4!#. In the representation
~17!, the eigenfunctionsF̃R of H should be used, therefore,
andnot the wave functionsṼR of the resonance states.

Using ~19! and ~20!, the population probability is as fol-
lows. Sincê F̃R8uF̃R&ÞdRR8, generally, we have

^f~ t !uf~ t !&5 (
R,R8

aR~0!aR8~0!*

3e2~ i /\![ER2ER82~ i /2!~GR1GR8!] t^F̃R8uF̃R&,

~24!

which can be rewritten as

^f~ t !uf~ t !&5(
R

uaR~0!u2e2~1/\!GRt^F̃RuF̃R&

12 (
R,R8

e2~1/2\!~GR1GR8!t

3Re$aR~0!aR8~0!*

3e2 ~ i /\! ~ER2ER8!t^F̃R8uF̃R&%. ~25!

A decay ratekeff can be defined by

keff~ t !52
d

dt
ln^f~ t !uf~ t !&, ~26!
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which is in general a complicated time-dependent function. It
has a monotonic behavior according to the first sum~single
sum overR) in ~25! and a oscillating one arising from the
second sum~double sum overR,R8).

To study the gross time behavior ofkeff we definekgr
eff,

taking into account only the single sum overR,

kgr
eff~ t !52

d

dt
lnH(

R
uaR~0!u2e2GRt/\^F̃RuF̃R&J

5
1

\

(
R

uaR~0!u2GRe
2GRt/\^F̃RuF̃R&

(
R

uaR~0!u2e2GRt/\^F̃RuF̃R&

. ~27!

Only under the condition̂F̃R8uF̃R&'0 for R8ÞR ~see Fig.
1 in Sec. III! we getkeff'kgr

eff .
In the case of an isolated resonanceR, ~26! reduces to the

standard relationkeff5kR
eff5(1/\)GR between decay rate and

width. In this case,keff is time independent and the decay law
is exponential.

The shape of isolated resonances is of Breit-Wigner type.
Therefore, we calculate the coefficientsuaR(0)u2 in ~25! and
~27! from the overlap integrals between Breit-Wigner distrib-
uted resonancesR and an incoming wave, chosen Gaussian
distributed with energyEb and widthGb :

uaR~0!u25F21E dE
1
4 GR

2

~E2ER!21 1
4 GR

2
e2[ ~E2Eb!/Gb]

2
,

~28!

where the normalization factor is
F5*dEe2[(E2Eb)/Gb]

2
5ApGb . The aR(0) used in the

double sum in~27! are calculated as the positive root of
AuaR(0)u2, i.e., any initial phase from the excitation is ig-
nored. A very smallGb simplifies expression~28!

uaR~0!u2'
1
4 GR

2

~Eb2ER!21 1
4 GR

2
. ~29!

FIG. 1. Measure of the nonorthogonality of
the statesu^F̃R8uF̃R&u2dRR8 for N570 states and
K51 open channel.~a!, ~b!, and ~c! are calcu-
lated in the CSM below (a50.1), in (a52), and
above (a510) the critical region of reorganiza-
tion, respectively.~d! is in the STM at the critical
point.
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For a very largeGb , uaR(0)u2'GR .
It should be noted here that the nucleus is not necessarily

excited via one of the channelsc that define theP subspace
of decay channels. It may be excited via another mechanism
such as, e.g., the deexcitation of a heavier nucleus.

III. QUANTUM COHERENCE

A. Trapping of resonance states at high level density

The trapping effect observed in many investigations~for
references see@11#! appears if the second part of the Hamil-
tonian ~1! becomes important relative to the first one. This
implies that the nondiagonal matrix elements are large with
the result that the diagonal matrix elements differ essentially
from the eigenvalues. Since the trace is constant at a fixed
energyE of the system and coupling strengtha between
discrete states and continuum, we have

22 Im$tr@H~E,a!#%5 (
R51

N

(
c51

K

gRc~E,a!5 (
R51

N

G̃R~E,a!

[g~E,a!, ~30!

wherec denote theK open decay channels and

gRc
1/25~2p!1/2^FR

SMuVujE
c & ~31!

is the coupling matrix element between the discrete stateR
and the channelc. It should be mentioned here thatgRc

1/2 may
be very different from the amplitude of the partial width

G̃Rc
1/25~2p!1/2

^F̃RuVujE
c &

^F̃RuF̃R&
~32!

of the resonance stateR, even if ^F̃RuF̃R&51 @13,15#.

FIG. 1 ~Continued!.
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With increasing coupling strengtha the widthsGR of all
states increase until the diagonal matrix elements of the
Hamiltonian~1! and its eigenvalues start to differ essentially
from one another. Here the imaginary partsG̃R of K eigen-
values start to increase much more strongly than the coupling
matrix elementsgRc . This is possible only at the cost of the
G̃R of theN2K remaining states~trapping effect!, which can
be seen from Eq.~30! rewritten in the manner

(
R51

K

G̃R~E,a!

g~E,a!
512

(
R5K11

N

G̃R~E,a!

g~E,a!
. ~33!

Equation~33! holds for alla. We define the critical region as
that region where the reorganization takes place and charac-
terize it by a valueacrit in its middle.

Due to the trapping effect, different time scales are
formed above the critical region~at high level density!

(
R51

K

G̃R@ (
R5K11

N

G̃R . ~34!

It also holds that

1

K(
R51

K

G̃R@
1

N2K (
R5K11

N

G̃R . ~35!

Relations~34! and~35! are a consequence of the fact that the
rank ofHQQ in ~1! is N, while that of the imaginary part of
the second termVQPGP

(1)VPQ is K,N ~because separability
holds!. Thus a redistribution must take place in the transition
from the low level density, where the first term of the Hamil-
tonian ~1! is important, to the high level density, where the
second part becomes important.

In the random matrix model~STM! with the Hamiltonian
H8, a critical point can be defined byk[2Ḡ/KD51 ~for
K!N), where Ḡ is the average value of the widths of the
N resonance states andD is their average distance@19,21#.
At this critical point,(R5K11

N GR starts to decrease with in-
creasinga @20#.

In the CSM a critical point cannot be defined byk51. In
any case, the trapping of resonances occurs locally between
individual resonances for which a critical point is well de-
fined. But fluctuations in the level density cannot, as a rule,
be described by a simple law. This leads to uncertainties in
the definition of a global critical point@11#. Thus we restrict
ourselves, in the framework of this model, to the definition
of a critical region~instead of a critical point! in which the
separation of the time scales takes place.

In the CSM with the HamiltonianH, the time scales are
well separated also atk'1 @22#. But (R5K11

N G̃R does not
decrease with further increasinga as in the STM. A reason
for this behavior is surely the term Re$VQPGP

(1)VPQ%, which
appears explicitly inH of the CSM Eq.~14!. This term cre-
ates energy shifts of all the states. Therefore, further level
repulsions in the complex plane between trapped states may
appear and a second generation of short-lived states@15# can
be created. Further, the importance of the real part ofH
~having rankN) does not decrease so strongly in comparison

to that of the imaginary part~having rankK) with increasing
coupling strengtha as it is supposed in the STM. As a con-
sequence,(R5K11

N G̃R saturates with further increasinga and
the widths are notx2distributed.

B. Wave functions in the critical region

The redistribution in the system~trapping effect! takes
place in a critical region of the level density~in relation to
the average width of the states! @13,15# in which the wave
functions of the short-lived states align with the channel
wave functions@11#. In this critical region, the left and right
eigenfunctions ofH differ substantially from each other.
Thus the redistribution taking place in the system reflects
itself in the nonorthogonality of theF̃R @15#.

Beyond the critical region, the wave functions of theK
short-lived states point into the direction of the decay chan-
nels@11#. They are orthogonal to one another as the channel
wave functions and are orthogonal also to the wave functions
of the trapped states. The wave functions of theN2K
trapped long-lived states calculated with the full Hamiltonian
H ~14! retain partly the nonorthogonality. These investiga-
tions have been performed for the diagonal matrix elements
^F̃RuF̃R& @15#.

The behavior ofz^F̃R8uF̃R& z is illustrated in Fig. 1. The
calculations are performed in the framework of the CSM
@Figs. 1~a! to 1~c!# as well as in the STM@Fig. 1~d!#. In all
calculations we haveN570 states andK51 open decay
channel. The figure showsz^F̃R8uF̃R& z2dRR8, i.e., thedevia-
tions of ^F̃R8uF̃R& from ^F̃R8

* uF̃R&5dRR8, for all combina-
tionsR,R8 of the 70 states.

In Fig. 1~a!, a,acrit , whereas in Figs. 1~b! and 1~c!
a5acrit anda.acrit , respectively. Well belowacrit the de-
viations of^F̃R8uF̃R& from dRR8 are small, but in andabove
the critical region, the deviations are large.

Figure 1~d! is made in the STM at the critical point
k51. The figure shows large deviations fromdRR8. Other
calculations have shown that below,as well asabove, the
critical point, the deviations are small in this model.

The plots of Fig. 1 show that in the critical region the
value z^F̃R8uF̃R& z2dRR8 is always large. Well below the
critical region z^F̃R8uF̃R& z'dRR8 in all cases considered. In
the STM, z^F̃R8uF̃R& z is small also far beyond the critical
region. In the CSM, however, this value remains large for the
trapped states. This difference is caused by the term
Re$VQPGP

(1)VPQ% in H Eq. ~14! ~see Sec. III A!.

IV. DECAY RATES AT LOW AND HIGH LEVEL
DENSITIES

A. Two resonances and one open decay channel

In order to investigate relation~25! in detail at high level
density, we performed some calculations. First, we consider
the case with two resonances and one open decay channel.
This simple example allows us to illustrate the time depen-
dence ofkeff.

The Hamiltonian is taken according to~16! . It reads@11#

H85S 1 0

0 21D 22iaS cos2w coswsinw

coswsinw sin2w D . ~36!
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Without loss of generality, we have chosen the eigenvalues
of HQQ to be 61. The V in ~16! are chosen as

V5A2a/p(cosw,sinw) with w5p/8. Thus the coupling of
one of the resonance states to the decay channel is stronger
than that of the other one.

The influence of the parametera in the Hamiltonian~36!
onto the eigenvalue picture is illustrated in Fig. 2~a!. The
‘‘motion’’ of the eigenvalues is drawn here as a function of
the coupling strengtha. One observes the trapping effect,
i.e., an attraction of the real parts of the eigenvalues and a
repulsion in the imaginary parts fora'acrit .

In the case of two resonances,^f(t)uf(t)& @Eq. ~25!#
consists of three terms

^f~ t !uf~ t !&5uabr~0!u2e2~1/\!Gbr t^F̃bruF̃br&

1uatr~0!u2e2~1/\!G tr t^F̃truF̃tr&

12e2~1/2\!~Gbr1G tr! tRe$abr~0!atr~0!*

3e2~ i /\!~Ebr2Etr! t^F̃bruF̃tr&%. ~37!

Here the index br stands for the broader of the two states and
the index tr for the narrower one.

In Fig. 2~b!, uaR(0)u2 @Eq. ~28!# is shown as a function of
a for two cases:~i! the beam energy is equal to the energy of

the narrow stateEb5Etr and~ii ! the beam energy is equal to
the energy of the broad stateEb5Ebr . In both cases the
beam is d shaped and the maximum valueua1(0)u251
~marked with a star! is obtained for the chosen state in both
cases. The upright triangles stand for the broad state of case
~i! and the inverted triangles for the narrow state of case~ii !.
For small a, almost only the chosen state is excited. As
a→acrit , ua2(0)u2 for the other state grows in both cases. As
a grows further beyondacrit , ua2(0)u2→1 in ~i!, but
ua2(0)u2→0 in ~ii !. This is a direct reflection of the trapping
effect.

In Fig. 2 the three points marked correspond to
a!acrit , a'acrit , anda.acrit . For these three values of
a, keff and kgr

eff are calculated. They areḠ/D50.1,1.1, and
4.1, respectively, in these three cases. The results are shown
in Fig. 3 for Eb5Etr and in Fig. 4 for Eb5Ebr . It is
a!acrit in Figs. 3~a! and 4~a!, a'acrit in Figs. 3~b! and
4~b!, and a.acrit in Figs. 3~c! and 4~c!. The thick lines
representkgr

eff and the thin oneskeff. In all cases,keff oscillates
aroundkgr

eff or it is keff'kgr
eff . Note the different ordinate and

abscissa scales in the different plots.
In Fig. 3~a!, kgr

eff is constant:kgr
eff5G tr . This arises from the

small value of the first term in~37! caused by the small value
uabr(0)u2. keff, however, shows a periodic behavior caused by
the interference term. It follows from~37! that the period is
T52p\/DE, whereDE5uEtr2Ebru. In our case,DE52

FIG. 2. Complex eigenvalues ofH8 for ~a! two states and in-
creasing coupling strengtha to the continuum and~b! uaR(0)u2 as a
function ofa for the two states. Upright triangles, broad state when
the narrow state is excited; inverted triangles, narrow state when the
broad state is excited; stars, the other state in both cases.

FIG. 3. Decay rateskeff ~thin lines! andkgr
eff ~thick lines! for ~a!

a!acrit , ~b! a'acrit, and~c! a.acrit . The curves are for the two
states shown in Fig. 2 andEb5Etr .
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MeV, giving T51p\ MeV. This period can be seen in Fig.
3~a!. The amplitude of the oscillations decreases in the re-
gion showed because the interference term decreases as
exp@21/2(Gbr1G tr)t/\#, while the second term in~37! de-
creases as exp(2G trt/\).

At a'acrit @Fig. 3~b!#, kgr
eff decreases from a value of

aboutGbr to G tr in a time of about 1\/MeV. During this time,
the broad state almost disappears andkgr

eff5G tr for larger
times. There are no long-time oscillations because the inter-
ference term disappears as exp@2(Gbr/2\)t#.

Both kgr
eff andkeff decrease faster from the large value at

t50 to G tr if a is larger @Fig. 3~c!#. The time whenG tr is
reached is approximately 0.4\/MeV in Fig. 3~c! compared to
approximately 1\/MeV in Fig. 3~b!. The difference between
kgr
eff andkeff in Fig. 3~c! is small because of the large differ-
ence betweenGbr andG tr .

In Fig. 4~a!, kgr
eff is nearly constant fort,20\/MeV for the

same reasons as in Fig. 3~a!. The value ofkgr
eff is, however,

Gbr /\ corresponding to thebroadstate. Since the broad state
decays quickly,kgr

eff decreases toG tr /\ of thenarrow state at
about t530\/MeV. The time when the first two terms in
(37#) are equal ist529.8\/MeV. The period of the oscilla-
tion is 1p\/MeV also in this case. The amplitude is large
aroundt530\/MeV, but small for other times. This follows
from ~37!. For small times, the interference term is small due
to abr(0)@atr(0) and the decay pattern is determined by
only the broad state. For long times, the broad state has
almost disappeared and the decay is determined by the nar-
row state in spite ofabr(0)@atr(0). Only in the transition
interval are both resonances of comparable importance and
interfere strongly.

In Fig. 4~b!, kgr
eff starts from an almost constant plateau

corresponding toGbr and decreases to the value ofG tr during
a time 2\/MeV. Until the time 3\/MeV, keff oscillates
aroundkgr

eff , but for longer timeskeff'kgr
eff .

The plateau atkgr
eff5Gbr for small times can clearly be

seen in Fig. 4~c!. In a short-time interval,kgr
eff decreases to

G tr . The difference betweenkeff andkgr
eff is small due to the

large difference betweenGbr andG tr .

B. N resonances andK channels

In Fig. 5 we show the results of a calculation forN570
states and K52 open channels using the STM
@Hamiltonian ~16!# with randomly chosen coupling vectors
Vc. The degree of overlapping of the resonances is large,
k510.0. We have therefore 2 broad states and 68 trapped
ones. The beam isd shaped and its energyEb corresponds to
the energyEtr of one of the trapped states. The thick line in
Fig. 5 showskgr

eff , while the thin one iskeff. Also in this case,
keff oscillates aroundkgr

eff .

FIG. 4. Same as in Fig. 3 butEb5Ebr .

FIG. 5. Decay rateskgr
eff ~thick line! and keff

~thin line! in the STM for N570 states and
K52 open channelsk510. The beam is narrow,
with the energy of one of the trapped states.

3346 54E. PERSSON, T. GORIN, AND I. ROTTER



The difference between the calculation with 70 reso-
nances and that with 2 resonances consists mainly in the fact
that uaR(0)u2 is nonvanishing not only for the two broad
states and the trapped one for whichEb5Etr but also for
other trapped states in the neighborhood ofEb . As a conse-
quence, many of the interference terms will be important.
This can be seen in the complicated, overlaid oscillations of
keff. The two broad states vanish very quickly.

Further, some trapped neighbors of the chosen state con-
tribute to Eq.~24!. Around t550\/MeV we can see a tran-
sition for kgr

eff to a value corresponding to the more long-lived
states.

In the calculation above, the beam is much narrower than
the width of the chosen state, which isGb!0.084 MeV. Due
to the uncertainity principle, this gives a resolution in time of
Dt'\/Gb . ThusDt@12\/MeV.

We performed another calculation with the same 70 states
and 2 channels in which the incoming beam is much broader
than the energy interval in which the states are lying. This
gives uaR(0)u2'GR for all the states. Figure 6 showskeff

~thin line! andkgr
eff ~thick line! for this case. In spite of many

terms in the double sum of~25!, keff shows a complicated
oscillatory behavior.

The point is that also in this very complicated situation,
keff oscillates aroundkgr

eff . The double sum consists of
N(N21)/252415 terms, each with a phase totally uncorre-
lated with that of all the other ones. The lengths are also
uncorrelated. The double sum, however, doesnot vanish.

We also studiedkeff in the CSM. We consideredK51
open channel andN5190 states with 2p-2h nuclear struc-
ture andJp512 ~for details see@15#! andḠ/D50.006.Gb is
very large. In Fig. 7~a!, kgr

eff ~thick line! andkeff ~thin line! are
shown for the same time interval as that of Figs. 5 and 6. The
oscillations are much faster in this plot than those in Fig. 6.
This is mainly due to the fact that the spectrum in Fig. 6
covers an interval of 2\/MeV, but in the calculation pre-
sented in Fig. 7 the length of the spectrum is 30 MeV. This
implies that the fastest oscillations in this case are 15 times
faster than those of Fig. 6.

Figure 7~b! presents a calculation for the same setup as in
Fig. 7~a!, but for much larger times. The time unit character-

istic of the system ist5\/Ḡ52.93104\/MeV. keff is shown
in the figure as a function oft and the plot is drawn in
log-log scale. The calculation ofkeff is not made dense
enough to catch all oscillations. The scattering of the points
aroundkgr

eff gives, however, a measure of how large the osil-
lations are. For very large timeskgr

eff approaches the width
G l /\ of the narrowest state. We also see in Fig. 7~b! that
keff fluctuates violently aroundkgr

eff as long askgr
eff is time

dependent~not constant!.

V. DECAY LAW

Isolated resonances are usually assumed to decay accord-
ing to an exponential law. It iskR

eff5G̃R /\ for the stateR,
whereG̃R is time independent~see Sec. II B!. At high level
density,kR

eff has to be replaced bykeff @Eq. ~26! with ~25!#,
which generally is a complicated time-dependent function
~compare Figs. 3–7!. Evenkgr

eff , Eq. ~27!, in which the oscil-
lations are neglected, is time dependent. Deviations from the
exponential decay law appear, therefore, at the high level
density, as a rule.

In the following, we neglect the oscillations of
^f(t)uf(t)&, i.e., the double sum in Eq.~25!. Suppose we
have a power law

^f~ t !uf~ t !&}t2b ~38!

instead of the exponential one^f(t)uf(t)&}exp(2Gt/\) in
a certain time interval. Then the relation between the decay
rate andb is

1

kgr
eff~ t !

5
t

b
. ~39!

According to this equation, the deviations from the exponen-
tial decay law can be represented by the rise of 1/kgr

eff as a
function of t from which the exponentb can be determined.

Figures 4–7 show plateauskgr
eff(t)'const arising from the

different lifetimes of the different states. We expectkgr
eff(t)

}b/t with b'const ~power decay law! if there are many
resonance states due to which the stairs between the different

FIG. 6. Same as in Fig. 5, but the beam is
much broader than the spectrum.
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plateaus are smeared out. In the long-time scale however,
kgr
eff(t)'const ~exponential decay law!, where const5G l /\
( l stands for the longest-lived state!. In the following, we
investigate the decay law numerically in both the CSM and
the STM for a finite numberN of states and a small number
K of open decay channels. In Figs. 8 and 9, we show 1/kgr

eff as
a function of time for different valuesa of the coupling
strength to the continuum and for differentK. The time scale
is given in unitst5\/Ḡ, whereḠ is the average width of all
theN resonances.

Figure 8 shows 1/kgr
eff calculated in the STM for 130 states

~with orthogonal constructed coupling vectorsVc), k51
~critical point!, andK5 1 ~a!, 2 ~b!, 4 ~c!, and 9~d!. The
beam is very broad. The different curves in each subplot
correspond to different random choices ofHQQ8 .

In all curves a power law is well fullfilled in a certain time
interval. In the one-channel case,b'3/2. The different
curves deviate from each other, especially at times larger
than 50t. For two channels, the power law withb'2 holds
quite well until t'30t, for four channels withb'2.7 until
t'8t, and for nine channels withb'4 until t'5t.

In Fig. 8 we have shown the results at the critical value
k51. The results of other calculations well below and well
abovek51 are similar to those shown in Fig. 8. In a certain
time interval, the power law is well fullfilled. We have
b.11K/2 for K51–9.

In @1,2# the decay law has been studied analytically using
the Hamiltonian~16! with an infinite number of states, an
infinitely broad beam, andk well below the critical value,
while in @3# the investigations are performed for allk. The
result is^f(t)uf(t)&}t2(11K/2), i.e.,b5K/211 in the case
with K open decay channels. Our numerical results with a
finite number of states agree quite well with the formula
obtained analytically even in the critical region (K<4),
where the redistribution of the spectroscopic properties takes
place.

In the CSM we have performed calculations forN5190
states andK5 1, 2, and 4 channels. The 190 states have
2p-2h nuclear structure andJp512 ~for details see@15#!.
The average distanceD between the states is defined by
those of the shell model states. The beam is very broad, i.e.,
uaR(0)u2'GR .

FIG. 7. Decay rateskgr
eff ~thick lines! in the

CSM with N5190 states (2p-2h nuclear struc-
ture and Jp512), K51 open channel, and
Ḡ/D50.012. In ~a! the oscillations ofkeff ~thin
line! are shown, while in~b! only some dots of
keff are given. The time scales are in different
units in ~a! and ~b!.
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Figure 9~a! shows 1/kgr
eff for one open neutron channel.

The different curves correspond to Ḡ/D
50.000 72, 0.087, 0.32, 0.67, 1.14, 1.71, and 2.38. We see
thatb'3/2 for small times up to aboutt5100t.

In Fig. 9~b!, 1/kgr
eff is drawn for the same 190 states, two

open neutron channels, andḠ/D5 0.0035, 0.20, 0.70, 1.49,
2.53, 3.80, 5.29, and 6.97. For small times~up to t'50t)
b'2. A similar behavior withb'2 is obtained for four open
channels~two neutron and two proton channels! shown in
Fig. 9~c!. The 11 curves correspond toḠ/D5 0.003 92,
0.003 94, 0.003 96, 0.0044, 0.0065, 0.016, 0.082, 0.32, 1.20,
4.18, and 57.5. We see a power law withb'2 as in the
two-channel case up tot'50t.

The main difference between the results obtained in the
two models consists in the dependence ofb on the number
K of channels. ForK51 we haveb'3/2 in both models.
For K52 and 4,b'2 in the CSM. In the STM, however,
b'11K/2 ~for kÞ1).

In Fig. 10 the distribution of the widths calculated for
a54.acrit andK54 channels in the CSM is shown~histo-
gram for theG̃R). The full line is the best fit to these values
by a x2 distribution. This fit to the calculatedG̃R is quite
good. Nevertheless, it corresponds to the one-channel case of
the STM. For comparison, we show thex2 distribution cor-
responding to four channels~dashed line!.

As can be seen from Fig. 10, the width distribution is very

different in the two models. This explains the differences for
b obtained in our calculations.

VI. CONCLUSION

In the present paper we investigated the decay properties
of an open many-particle quantum system. The Hamiltonian
is non-Hermitian and its eigenfunctions and eigenvalues are
complex. The eigenfunctions form a biorthogonal system. As
a consequence, the wave functions of the resonance states are
generally nonorthogonal to one another. Near the critical
point of rearrangement, some states with short lifetimes align
with the decay channels. As a result, their lifetimes become
still shorter, while the lifetimes of the remaining states be-
come longer. Finally, we have two groups of resonance
states with well-separated lifetimes.

We calculated the decay rates at low as well as at high
level density in the framework of both the continuum shell
model and the random-matrix formalism. The rates are pro-
portional to the widths of the resonance states at low level
density where they are isolated. At higher level density, the
decay rates show an oscillatory behavior caused by the non-
orthogonality of the wave funtions. Disregarding the oscilla-
tions, the rates are, nevertheless, still time-dependent func-
tions. This implies deviations from the exponential decay
law. The decay law for an ensemble of states in a certain
energy region is non-exponential~proportional tot23/2) for

FIG. 8. 1/kgr
eff in the STM for 130 states andk51: ~a! K51, ~b! K52, ~c! K54, and~d! K59. The different curves in each plot

correspond to different random matricesHQQ8 The units aret5\/Ḡ ~different scaling in all parts!.
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the case of one open channel. This result is obtained in both
models and forall values of the coupling parametera be-
tween bound and unbound states. It is in agreement with the
result of analytical investigations in the random-matrix
theory for an infinite number of states@1–3#.

The decay lawt212K/2 still holds good in the two models
for K52 open channels. For more than two channels, the
exponent remains nearly constant in the CSM. In the STM,
however, thet212K/2 law holds also quite good forK54 and
even forK59 far from the critical region.

The distribution of the widths is different in the two mod-
els when few channels are open. In the CSM, the distribution
for four channels cannot be fitted by the appropriatex2 dis-
tribution for K54 of the STM. This result explains the dif-
ferences in the decay law obtained in the two models. The
origin of the width distribution in the CSM is a question for
further investigations. Finally, we stress that a direct experi-
mental measurement of the decay properties of quantum sys-
tems at high level density is of great interest.
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